Математика в машинном обучении

Код товара 1641120 В наличии
0 отзывов
  • Автор Дайзенрот М. , Фейзал А. , Он Ч.
  • Издательство Питер Издательский дом
  • Серия Для профессионалов (Питер ИД)
  • Год издания 21.07.2023
  • Количество страниц: 512
  • Возрастной рейтинг 16+
  • Фундаментальные математические дисциплины, необходимые для понимания машинного обучения, — это линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика. Традиционно все эти темы размазаны по различным курсам, поэтому студентам, изучающим data science или computer science, а также профессионалам в МО, сложно выстроить знания в единую концепцию.Эта книга самодостаточна: читатель знакомится с базовыми математическими концепциями, а затем переходит к четырем основным методам МО: линейной регрессии, методу главных компонент, гауссову моделированию и методу опорных векторов.Тем, кто только начинает изучать математику, такой подход поможет развить интуицию и получить практический опыт в применении математических знаний,а для читателей с базовым математическим образованием книга послужит отправной точкой для более продвинутого знакомства с машинным обучением.

Скрыть описание
2590
Цены действительны при оформлении заказа на сайте